Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microbial responses to nitric oxide and nitrosative stress: growth, "omic," and physiological methods.

Identifieur interne : 000256 ( Main/Exploration ); précédent : 000255; suivant : 000257

Microbial responses to nitric oxide and nitrosative stress: growth, "omic," and physiological methods.

Auteurs : Steven T. Pullan [Royaume-Uni] ; Claire E. Monk ; Lucy Lee ; Robert K. Poole

Source :

RBID : pubmed:18433644

Descripteurs français

English descriptors

Abstract

The study of bacterial responses to nitric oxide (NO), nitrosating agents, and other agents of nitrosative stress has a short history but has rapidly produced important insights into the interactions of these agents with model microbial systems as well as pathogenic species. Several methodological problems arise in attempting to define the global responses to these agents, whether in simply measuring growth or performing "omic" experiments in which the objective is to determine the genome-wide (transcriptomic) or proteome-wide responses. The first problem is the relatively long timescale over which the experiments are conducted--minutes, hours, or days in the case of slow-growing cultures. The second problem is not unique to NO and its congeners but concerns the difficulties encountered when sensitive and comprehensive analytical techniques (such as transcriptomics) are applied to cultures whose growth and physiology are perturbed by an inhibitor. In essence, the problem is "seeing the wood for the trees." This chapter reviews briefly the state of knowledge of NO responses and mechanisms in bacteria, particularly Escherichia coli and Campylobacter jejuni. Continuous culture has several advantages for investigating the consequences of NO exposure, and this approach is outlined with examples of recent results and conclusions. The major advantage of the chemostat is establishment of a reproducible quasi-steady state in growth, in which the growth rate can be controlled and maintained. Contrary to common belief, neither the concept nor the apparatus is difficult. Commercially available and homemade systems are described with practical advice. Establishing continuous cultures paves the way for other "omic" approaches, particularly proteomics and metabolomics, which are not covered here, as their application to the field of NO biology is in its infancy. A key to the literature describing methods suitable for assessing toxicity to microbes of NO and reactive nitrogen species is given.

DOI: 10.1016/S0076-6879(07)37025-0
PubMed: 18433644


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Microbial responses to nitric oxide and nitrosative stress: growth, "omic," and physiological methods.</title>
<author>
<name sortKey="Pullan, Steven T" sort="Pullan, Steven T" uniqKey="Pullan S" first="Steven T" last="Pullan">Steven T. Pullan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield</wicri:regionArea>
<wicri:noRegion>Sheffield</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Monk, Claire E" sort="Monk, Claire E" uniqKey="Monk C" first="Claire E" last="Monk">Claire E. Monk</name>
</author>
<author>
<name sortKey="Lee, Lucy" sort="Lee, Lucy" uniqKey="Lee L" first="Lucy" last="Lee">Lucy Lee</name>
</author>
<author>
<name sortKey="Poole, Robert K" sort="Poole, Robert K" uniqKey="Poole R" first="Robert K" last="Poole">Robert K. Poole</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18433644</idno>
<idno type="pmid">18433644</idno>
<idno type="doi">10.1016/S0076-6879(07)37025-0</idno>
<idno type="wicri:Area/Main/Corpus">000257</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000257</idno>
<idno type="wicri:Area/Main/Curation">000257</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000257</idno>
<idno type="wicri:Area/Main/Exploration">000257</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Microbial responses to nitric oxide and nitrosative stress: growth, "omic," and physiological methods.</title>
<author>
<name sortKey="Pullan, Steven T" sort="Pullan, Steven T" uniqKey="Pullan S" first="Steven T" last="Pullan">Steven T. Pullan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield</wicri:regionArea>
<wicri:noRegion>Sheffield</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Monk, Claire E" sort="Monk, Claire E" uniqKey="Monk C" first="Claire E" last="Monk">Claire E. Monk</name>
</author>
<author>
<name sortKey="Lee, Lucy" sort="Lee, Lucy" uniqKey="Lee L" first="Lucy" last="Lee">Lucy Lee</name>
</author>
<author>
<name sortKey="Poole, Robert K" sort="Poole, Robert K" uniqKey="Poole R" first="Robert K" last="Poole">Robert K. Poole</name>
</author>
</analytic>
<series>
<title level="j">Methods in enzymology</title>
<idno type="ISSN">0076-6879</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (drug effects)</term>
<term>Bacteria (growth & development)</term>
<term>Bacterial Physiological Phenomena (MeSH)</term>
<term>Campylobacter jejuni (genetics)</term>
<term>Campylobacter jejuni (growth & development)</term>
<term>Campylobacter jejuni (metabolism)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (growth & development)</term>
<term>Escherichia coli (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (drug effects)</term>
<term>Genomics (MeSH)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Microbiological Techniques (instrumentation)</term>
<term>Microbiological Techniques (methods)</term>
<term>Models, Biological (MeSH)</term>
<term>Nitric Oxide (metabolism)</term>
<term>Nitric Oxide (pharmacology)</term>
<term>Nitric Oxide Donors (pharmacology)</term>
<term>Nitrosation (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Oxidative Stress (physiology)</term>
<term>Proteomics (methods)</term>
<term>Reactive Nitrogen Species (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Bactéries (croissance et développement)</term>
<term>Bactéries (effets des médicaments et des substances chimiques)</term>
<term>Campylobacter jejuni (croissance et développement)</term>
<term>Campylobacter jejuni (génétique)</term>
<term>Campylobacter jejuni (métabolisme)</term>
<term>Donneur d'oxyde nitrique (pharmacologie)</term>
<term>Escherichia coli (croissance et développement)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Espèces réactives de l'azote (pharmacologie)</term>
<term>Génomique (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Monoxyde d'azote (métabolisme)</term>
<term>Monoxyde d'azote (pharmacologie)</term>
<term>Nitrosation (MeSH)</term>
<term>Phénomènes physiologiques bactériens (MeSH)</term>
<term>Protéomique (méthodes)</term>
<term>Régulation de l'expression des gènes bactériens (effets des médicaments et des substances chimiques)</term>
<term>Stress oxydatif (physiologie)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Techniques microbiologiques (instrumentation)</term>
<term>Techniques microbiologiques (méthodes)</term>
<term>Tests de sensibilité microbienne (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitric Oxide</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Bactéries</term>
<term>Campylobacter jejuni</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Bacteria</term>
<term>Gene Expression Regulation, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Bactéries</term>
<term>Régulation de l'expression des gènes bactériens</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Campylobacter jejuni</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Bacteria</term>
<term>Campylobacter jejuni</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Campylobacter jejuni</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Microbiological Techniques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Campylobacter jejuni</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Microbiological Techniques</term>
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Campylobacter jejuni</term>
<term>Escherichia coli</term>
<term>Monoxyde d'azote</term>
<term>Techniques microbiologiques</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Protéomique</term>
<term>Techniques microbiologiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Donneur d'oxyde nitrique</term>
<term>Espèces réactives de l'azote</term>
<term>Monoxyde d'azote</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Nitric Oxide</term>
<term>Nitric Oxide Donors</term>
<term>Reactive Nitrogen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bacterial Physiological Phenomena</term>
<term>Gene Expression Profiling</term>
<term>Genomics</term>
<term>Microbial Sensitivity Tests</term>
<term>Models, Biological</term>
<term>Nitrosation</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Génomique</term>
<term>Modèles biologiques</term>
<term>Nitrosation</term>
<term>Phénomènes physiologiques bactériens</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Tests de sensibilité microbienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The study of bacterial responses to nitric oxide (NO), nitrosating agents, and other agents of nitrosative stress has a short history but has rapidly produced important insights into the interactions of these agents with model microbial systems as well as pathogenic species. Several methodological problems arise in attempting to define the global responses to these agents, whether in simply measuring growth or performing "omic" experiments in which the objective is to determine the genome-wide (transcriptomic) or proteome-wide responses. The first problem is the relatively long timescale over which the experiments are conducted--minutes, hours, or days in the case of slow-growing cultures. The second problem is not unique to NO and its congeners but concerns the difficulties encountered when sensitive and comprehensive analytical techniques (such as transcriptomics) are applied to cultures whose growth and physiology are perturbed by an inhibitor. In essence, the problem is "seeing the wood for the trees." This chapter reviews briefly the state of knowledge of NO responses and mechanisms in bacteria, particularly Escherichia coli and Campylobacter jejuni. Continuous culture has several advantages for investigating the consequences of NO exposure, and this approach is outlined with examples of recent results and conclusions. The major advantage of the chemostat is establishment of a reproducible quasi-steady state in growth, in which the growth rate can be controlled and maintained. Contrary to common belief, neither the concept nor the apparatus is difficult. Commercially available and homemade systems are described with practical advice. Establishing continuous cultures paves the way for other "omic" approaches, particularly proteomics and metabolomics, which are not covered here, as their application to the field of NO biology is in its infancy. A key to the literature describing methods suitable for assessing toxicity to microbes of NO and reactive nitrogen species is given.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18433644</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0076-6879</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>437</Volume>
<PubDate>
<Year>2008</Year>
</PubDate>
</JournalIssue>
<Title>Methods in enzymology</Title>
<ISOAbbreviation>Methods Enzymol</ISOAbbreviation>
</Journal>
<ArticleTitle>Microbial responses to nitric oxide and nitrosative stress: growth, "omic," and physiological methods.</ArticleTitle>
<Pagination>
<MedlinePgn>499-519</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/S0076-6879(07)37025-0</ELocationID>
<Abstract>
<AbstractText>The study of bacterial responses to nitric oxide (NO), nitrosating agents, and other agents of nitrosative stress has a short history but has rapidly produced important insights into the interactions of these agents with model microbial systems as well as pathogenic species. Several methodological problems arise in attempting to define the global responses to these agents, whether in simply measuring growth or performing "omic" experiments in which the objective is to determine the genome-wide (transcriptomic) or proteome-wide responses. The first problem is the relatively long timescale over which the experiments are conducted--minutes, hours, or days in the case of slow-growing cultures. The second problem is not unique to NO and its congeners but concerns the difficulties encountered when sensitive and comprehensive analytical techniques (such as transcriptomics) are applied to cultures whose growth and physiology are perturbed by an inhibitor. In essence, the problem is "seeing the wood for the trees." This chapter reviews briefly the state of knowledge of NO responses and mechanisms in bacteria, particularly Escherichia coli and Campylobacter jejuni. Continuous culture has several advantages for investigating the consequences of NO exposure, and this approach is outlined with examples of recent results and conclusions. The major advantage of the chemostat is establishment of a reproducible quasi-steady state in growth, in which the growth rate can be controlled and maintained. Contrary to common belief, neither the concept nor the apparatus is difficult. Commercially available and homemade systems are described with practical advice. Establishing continuous cultures paves the way for other "omic" approaches, particularly proteomics and metabolomics, which are not covered here, as their application to the field of NO biology is in its infancy. A key to the literature describing methods suitable for assessing toxicity to microbes of NO and reactive nitrogen species is given.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pullan</LastName>
<ForeName>Steven T</ForeName>
<Initials>ST</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Monk</LastName>
<ForeName>Claire E</ForeName>
<Initials>CE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Lucy</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poole</LastName>
<ForeName>Robert K</ForeName>
<Initials>RK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Methods Enzymol</MedlineTA>
<NlmUniqueID>0212271</NlmUniqueID>
<ISSNLinking>0076-6879</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020030">Nitric Oxide Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026361">Reactive Nitrogen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018407" MajorTopicYN="N">Bacterial Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016123" MajorTopicYN="N">Campylobacter jejuni</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="Y">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008828" MajorTopicYN="N">Microbiological Techniques</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020030" MajorTopicYN="N">Nitric Oxide Donors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015538" MajorTopicYN="N">Nitrosation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="Y">Proteomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026361" MajorTopicYN="N">Reactive Nitrogen Species</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>62</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18433644</ArticleId>
<ArticleId IdType="pii">S0076-6879(07)37025-0</ArticleId>
<ArticleId IdType="doi">10.1016/S0076-6879(07)37025-0</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lee, Lucy" sort="Lee, Lucy" uniqKey="Lee L" first="Lucy" last="Lee">Lucy Lee</name>
<name sortKey="Monk, Claire E" sort="Monk, Claire E" uniqKey="Monk C" first="Claire E" last="Monk">Claire E. Monk</name>
<name sortKey="Poole, Robert K" sort="Poole, Robert K" uniqKey="Poole R" first="Robert K" last="Poole">Robert K. Poole</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Pullan, Steven T" sort="Pullan, Steven T" uniqKey="Pullan S" first="Steven T" last="Pullan">Steven T. Pullan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000256 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000256 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18433644
   |texte=   Microbial responses to nitric oxide and nitrosative stress: growth, "omic," and physiological methods.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18433644" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020